第1回 PF-UA サマースクール 「放射光分析手法の初学者向け勉強会」

走査型透過X線顕微鏡 (Scanning Transmission X-ray Microscopy: STXM)

その有効性とPFでのSTXM利用

東京大学 大学院理学系研究科 地球惑星科学専攻 高橋 嘉夫

謝辞(敬称略) PF BL-19: 武市泰男、山下翔平、小野寛太 SPring-8 BL17SU: 大浦正樹、菅大暉

STXM (Scanning Transmission X-ray Microscopy)

- FZP**集光の10 nmオーダの軟X線を用いたイメージング・分光分析** - 元素&化学種(官能基)マッピング & ナノXAFS分析
 - 主に透過配置(蛍光法・電子収量法も利用可能)
 - (準)大気圧下(He置換雰囲気)で実験可能
 - 広い応用範囲(多元素、大気圧下)、どの放射光施設にも1台有り

- Ptychography等への展開可 * 非常に幅広い分野への応用可、多くの潜在的ユーザー有

XAFSから得られる情報: EXAFS

EXAFS 隣接原子種・ 距離・配位数

内殻から空準位への共鳴遷移
 → 内殻の安定化
 空準位への隣接原子の影響

(分子軌道)

→ 吸収スペクトルに振動構造
 散乱原子種、距離
 散乱原子の数(→振幅)

終状態に散乱波が影響

X線吸収法(XAFS)を用いた地球・環境化学の研究

- X線分光法は原子・分子・ナブレベルの相互作用を 明らか にし、 atomic scaleとmacro scaleの現象の橋渡しをする

- XAFSによる化学種解析は、地球・惑星で起きる化学反応の 理解に必須で、この研究分野は「分子地球化学」とよばれる

バングラデシュにおける地下水のヒ素汚染

バングラデシュ 世界最大のヒ素の汚染地域

人為的汚染が直接の原因ではない

汚染地下水飲用人口は数千万人

WHOの飲料基準値 (10 ppb) を満たす井戸の数は1/3以下

中毒症:角化症、皮膚がんなど

Bangladeshの飲料基準値(50 ppb) を超過する井戸水の割合分布

堆積物から地下水へのヒ素の溶け出し 原子レベルでのヒ素の化学反応の理解必須

鉄水酸化物還元説

鉄水酸化物にヒ素が吸着

測定の実際(放射光を用いたXAFS測定)

AsおよびSbの局所分布

grain A

grain B

grain C

Sb Fe As 20 µm 20 µm 20 µm 20 µm biotite 20 µm **Fe** ^{20 μm} As 20 μm **Sb** ^{20 μm} Sb As qtz 20 µm 20 µm 20 µm 20 µm

Sb, AsがFeと相関・・・Sb, AsがFe水酸化物に取り込まれている grain A, C: 砕屑性の粒子の周縁部をFe水酸化物が覆い、Sb, Asが濃集

土壌中のAsの周囲の構造

AsのFe水酸化物への吸着構造

微生物が作った鉄(水酸化鉄)の沈殿

バイオフィルム -SEM像-

Gallionella ferruginea

• 鉄酸化細菌の一種

鉄酸化菌による水酸化鉄の生成過程

Schematic life cycle of *M. ferroxydans* (Singer et al., 2011)

<u>鉄酸化菌</u> (<u>M. Ferroxydans</u>)

- 独立栄養化学合成細菌
- Fe²⁺をFe³⁺に酸化して得られる エネルギーで生きている
- CO₂から有機物を合成
- 酸化の際に生成する水酸化鉄 (Fe(OH)₃)を身体から切り離す 機構を持っている

微生物のテンプレートが水酸化鉄を作る

ALS BL11.0.2 の利用 (2003供用)

Microbial Polysaccharides Template Assembly of Nanocrystal Fibers

Clara S. Chan,^{1*} Gelsomina De Stasio,^{2,4*}† Susan A. Welch,³‡ Marco Girasole,⁵ Bradley H. Frazer,^{2,4} Maria V. Nesterova,³§ Sirine Fakra,⁶ Jillian F. Banfield^{1,3}†

12 MARCH 2004 VOL 303 SCIENCE

例1: 総説執筆(2005)

例2: 講演で必要性主張

当時(2008)の聴衆の反応: 「顕微鏡?」、「透過で?」、 「蛍光X線じゃないの?」

STXMの認知度低い 硬X線と軟X線の壁 ⇒サイエンスには無関係

<u>注目の論文</u> 微生物のもつテンプレートが 天然鉱物を生成する	Biomineralization Takahashi Yoshio 高橋 嘉夫	フィルムと共存する水試料である ³⁾ .こ のバイオフィルムは水酸化鉄を含み,鉄 酸化菌 (<i>Leptothrix</i> spp.や <i>Gallionella fer</i> -
 "Microbial Polysaccharides Template Assembly of Nanocrystal Fibers," C. S. Chan, G. De Stasio, S. A. Welch, M. Girasole, B. H. Frazer, M. V. Nesterova, S. Fakra, J. F. Banfield, <i>Science</i>, 303, 1656 (2004). 微生物が細胞表面にもつ多糖類がテン ブレートとなって天然鉱物が生成する 例が報告された. バイオミネラリゼー ションの化学的素過程を追う重要な手 がかりであり、鉱物生成と代謝との関 係の新たな提案でもある. 	バイオフィルム β-FeOOH (多糖類がテンフレート となって生成) バクテリア細胞表面 図1 天然でのβ-FeOOHの生成がバー 表面の多糖類をテンプレートと れた過程の模式図	trwa. Fe ²⁺ の酸化と; 酸化鉄の生成はプロトンの 生成を伴う[Fe ²⁺ + 2H ₂ O - Fe(OH) ₂ ⁺ + 2H ⁺ , Fe(OH) → FeOOH + H ⁺ など. Fe (OH) ₂ ⁺ は中性の水でのF (Ⅲ)の主要な溶存態]. のプロトンは, ATP合成開 素によるエネルギー生成; 可能にする. このことかり 彼らは,鉄酸化菌の高分 を分泌するサイトのそばし
◆ 鉱物生成はパイオミネラリゼー ションと呼ばれ,地球科学や生物学など の多方面から精力的に研究されている ^{1,2)} . とくに天然で採取されたバクテリア(あ	にFe ³⁺ を添加した場合にも生成した. 彼らは,なぜ微生物のもつ高分子の 「ひも」が鉱物生成に利用されたかも議論	ATP合成酵素が存在し、高 分子のひもを介した鉱物生成が鉄酸化菌 の代謝エネルギー生成に関与していると 予想している。

PF NEWS Vol. 26 No. 1 MAY, 2008

放射光セミナー

日時:2008年6月19日(木)13:30~ 講師:高橋 嘉夫(広大院理) 題目:放射光X線分光を用いた環境地球 化学研究の新展開

STXM@PFの構想・建設@BL-13A(2012年4月~)

- まずは手元に装置がないと、何も始まらない
 *ALS等に課題申請しても、競争率が高く、一見さんは採択されない
- 小野・武市・井波グループの優れた開発能力でSTXMの設計・建設
 * BL-13Aの利用(間瀬一彦先生、雨宮健太先生)
 * 2013年にユーザー分析ができるようになった
 * O₂導入による光学素子の炭素汚染除去: C K-edgeでの分光に強み
- ・UVSORでも同時期にSTXM導入(大東琢治先生・小杉信博先生)

High

• SPring-8 BL17SU(蛍光検出STXM、大浦正樹先生、菅大暉先生)

X線分光法のエネルギーと対象元素

X線のエネルギーと各元素の吸収

軟X線と硬X線では文化が違う

軟X線: 0.1 -2.0 keV ·硬X線: > 2.0 keV

CXRO X-ray Interactions with matter (超便利な計算ソフト)

Ø

X-Ray Database

Nanomagnetism	Ø
X-Ray Microscopy	Ø
EUV Lithography	Ø
EUV Mask Imaging	Ø
Reflectometry	Ø
Zoneplate Lenses	Ø
Coherent Optics	Ø
Nanofabrication	Ø
Optical Coatings	Ø
Engineering	Ø
Education	Ø
Publications	Ø
Contact	e

The Center for X-Ray Optics is a multi-disciplined research group within Lawrence Berkele National Laboratory's (LBNL Materials Sciences Division (MSD) Notice to users

X-Ray Interactions With Matter

SHARE

Introduction

introduction -		
Access the atomic scattering factor files.		
Look up x-ray properties of the elements.		
The index of refraction for a compound material.		
The x-ray attenuation length of a solid.		
X-ray transmission		
• Of a solid.		
• Of a gas.		
X-ray reflectivity		
Of a thick mirror.		
• Of a single layer.		
• Of a bilayer.		
Of a multilayer.		
The diffraction efficiency of a transmission grating.		
Related calculations:		
 Synchrotron bend magnet radiation. 		
X ray Data Booklet		

X-ray Data Booklet Other x-ray resources.

測定の実際 (放射光を用いたXAFS測定)

X線顕微鏡(X線顕微分光分析)

- 透過配置: 濃度 or 試料の厚みの制限が厳しい、空間分解能大
 - 蛍光配置: 微量元素まで測定可能、厚み大で空間分解能低下
 → しかし、薄くしすぎると、感度が落ちる。

- 十分な吸収があれば、透過配置の方が、空間分解能がよい。 - FIBなどによって薄い試料を作成する必要あり。

軟X線イメージング手法

集光素子

<u>マイクロビームを形成する時に用いる</u> <u>K-B ミラー(全反射)</u>

- ・色収差がない (・アラインメントが難しい
- Cotte et al. (2018)
- フレネルゾーンプレート(回折)

ポリキャピラリー(全反射)

Fresnel Zone Plate(FZP)

*値段がお高い(>100万円)。厚み30-100 nmなので大事に扱う。

FZPによる 集光

• FZPの集光特性を決めるパラメータ: Diameter *D*, Outermost zone width Δr ca • 焦点距離 $f = \frac{D\Delta r}{\lambda} = \frac{D\Delta r}{2\pi\hbar c} E$ (エネルギーに比例) • n番目のゾーン半径 $r_n^2 = n\lambda f + \frac{n^2 f^2}{4}$ • 焦点深度 Depth of focus (DoF) $DoF = \pm \frac{2(\Delta r)^2}{\lambda}$ (例) $\Delta r = 30$ nm, E = 400 eVでDoF = 0.4 um

- 集光比 (光源点サイズと集光サイズの比) M = p/q
- Rayleigh分解能 =1.22∆r

Reference:

D. Attwood, "Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications" (Cambridge University Press 1999), Chap. 9. A. L. D. Kilcoyne *et al.*, J. Synchrotron Rad. <u>10</u>, 125 (2003).

(武市さん作成図)

PFおよびPF-ARでの顕微分光分析のビームライン

XAFS-CT @PF-AR NW2A

- 8-11 keV
- TXM + CT, \sim 50nm res.

STXM @PF BL-13A -> BL-19A

- 250-1600eV
- ~30nm res.
- MCD/LD

Semi-µ-XRF-XAFS-XRD @PF 15-A1

- 2.1-15keV
- 20µm res.
- Multi

<u>μ-XRF-XAFS @PF BL-4A</u>

- 5-15keV
- $5 \,\mu m res.$
- Multimodal

STXM (Scanning Transmission X-ray Microscopy)

- FZP**集光の10 nmオーダの軟X線を用いたイメージング・分光分析** - 元素&化学種(官能基)マッピング & ナノXAFS分析
 - 主に透過配置(蛍光法・電子収量法も利用可能)
 - (準)大気圧下(He置換雰囲気)で実験可能
 - 広い応用範囲(多元素、大気圧下)、官能基・化学種マッピング

- Ptychography等への展開可 * 非常に幅広い分野への応用可、多くの潜在的ユーザー有

STXM (Scanning Transmission X-ray Microscopy)

試料調製

<u>透過法の場合</u>

・吸収端での吸光度のジャンプが1程度になるように調製例:

(5) 固体粉末試料を標準試料として分析

 → なるべく微小な粒子のちらして適切な厚みの部位を測定
 BL-19Bの電子収量法で測定(エネルギーシフトに注意)

蛍光法の場合

特に制限はない、平滑な面があればよい
 高濃度の場合にはThickness effect (overabsorption effect)に注意

得られるデータ

主な測定モード:

エネルギー固定でのイメージング、点スペクトル、線スペクトル、

- イメージスタック法(特定の吸収端付近でエネルギーを変えながらイメージ取得) 元素マッピング(吸収端前後マップ取得)、化学種マッピング
- Singlular value decomposition (SVD; 特異値分解)
- 標準試料スペクトルを使ったフィッティング aXis2000でも解析可能

炭素の官能基マッピング

解析ソフト_どちらもフリー

aXis2000

- ・データアラインメント
- ・画像作製
- ・スペクトル取り出し
- ・基本的な解析

Mantis

- PCA
- ・Cluster 解析
- ・ (基本的な解析)

Zimbaでのドリフト補正

Zimbaでのスペクトル抽出

特異値分解で化学種(特定のスペクトルを持つ化学種)のマッピング

 1. ドリフト補正済みのOD変換イメージ スタック
 2. フィッテイングに使うスペクトルを特 定する。

有機薄膜太陽電池エネルギー変換効率 (Moritomo et al., 2014, 2015)

 複数の有機分子からなる有機薄膜太陽電池の特性理解には、膜の 内部の有機分子の混合状態を知る必要。AFM/TEM観察では困難。

有機薄膜太陽電池中のn型/p型半導体の分布

混合状態とエネルギー変換効率の関係 → よりよい有機太陽電池 *今回の材料:変換効率はドメインサイズには依存しない

偏光を利用したSTXM実験: Nd-Fe-B永久磁石材料の磁気状態観察

- $Nd_{2}Fe_{14}B$ 焼結磁石: 粒径=数µm
- Nd M4端 (1003 eV) で観察: 20 nm step, 7×10 µm FOV
- 粒内のストライプ磁区=交換相互作用と双極子相互作用の競合
- 一粒ひとつぶが単一磁区

Nd-Fe-B 焼結磁石 のSTXM 実験結果: XMCD 成分を除い たNd M4 端でのX 線透過像

微生物による鉱物溶解反応機構の解明

鉄・硫黄酸化細菌による硫化鉱物 (パイライト) の溶解

 $FeS_2 \rightarrow Fe^{3+}, SO_4^{2-}$

バイオリーチング(微生物を使ったレアメタルの溶出法)技術へ貢献

炭素 NEXAFS を用いて微生物一鉱物付着面の有機物組成を調べる

Energy (eV)

シングルセルレベルでの官能基イメージング

C 1s NEXAFS

細胞周辺に多糖類が濃集

多糖類に富む領域の厚み:約100-200 nm

A. ferrooxidans による pyrite溶解モデル

PF BL-19A・Bの建設とSTXMの移設

専用ビームラインへの渇望

- ・BL-13Aは様々なグループの装置同居→マシンタイム不足
- エネルギー領域(250-1600 eV)を拡大したい
 標準試料測定(顕微法では測定容易ではない)

新学術領域研究「水惑星学の創成」 国際競争力強化事業「イノベーション創出」

2018年11月にファーストライト (武市泰男、若林大佑、山下翔平、田中宏和、 豊島章雄、小野寛太、木村正雄の諸先生方)

有機物(C、N、O)以外に、 水惑星学(水-岩石・鉱物相互 作用の解析に必須なNa、Mg、 Al、Si、Sなどの分析も可能

S1課題(2018-2022)の推進: 2018S1-001

- 水惑星学創成のためのSTXM分析拠点の形成と応用 S1課題・・・BLの改造・建設および大型装置の整備を伴うプロジェクト研究
- 新BL-19の構築(BL-13Aからの移設) 十分なマシンタイム確保 新アンジュレータによる広いエネルギー範囲(120-2000 eV) BL-19Bによる標準試料のバルク分析

リュウグウの形成・移動と水質変成

リュウグウの水質変成における物質進化の理解 →酸化還元状態やpHの復元が重要

大気非暴露STXM

リュウグウサンプル 嫌気的環境下実験

Air-tight handling from Ryugu, FIB and STXM

リュウグウのマトリクス物質

Flat surface

Po

Sap + Serp

μm

Sap

1

嫌気条件で FIB加工により 厚さ100-200 nmの超薄片 作製@PF

Nakamura et al. (2023)

Mg K吸収端 XANES

Energy (eV)

サポナイト層間の吸着イオン組成から 溶存イオン濃度の推定

どの陽イオンが層間に保持されるかは 水中の各陽イオンの濃度とスメクタイトの選択係数Kに依存

蛍光検出/転換電子収量モードによるSTXM分析

透過法で測定できない微量な元素(Naなど)のSTXM測定は?

重要な特徴

- どちらの手法も、FIBによる超薄片は不要

→ 切片試料でOK、FIB利用に比べて試料ダメージ少

- 透過法より高感度
- Photon Factory BL-19B (蛍光法、電子収量法; 山下博士)
- SPring-8 BL17SU (蛍光法; 大浦博士、菅博士)

バルク/STXM分析によるNa, K-XANES

- Na+ の分布はMg²+ と同じ(もしくは層状ケイ酸塩)
- リュウグウにNaClはほとんど存在しない(バルクXAFS)
- リュウグウのほとんどのNa+ はサポナイトに吸着
- リュウグウのほとんどのK+ もサポナイトに吸着

バルク/STXM分析によるNa, K-XANES

得られた水質条件と鉱物の生成条件から、pHを推定可能 → pH 7.8~10.2の範囲内 → アルカリ性の水だった

層状ケイ酸塩によるH₂生成で CO₂還元・有機物生成?

1.リュウグウの水環境は、 強還元・高pHな環境であった。

2. 高CO2濃度

3. 粘土層間での反応高CO2濃度

PF研究会「開発研究多機能ビームラインの建設と利用」 2023.1.5-1.6

2ビーム利用で広がる マイクロビームX線分光分析 マイクロビームX線分析応用UG - 阿部 善也(東京電機大学 工学研究科 物質工学専攻) - 高橋 嘉夫(東京大学 大学院理学系研究科 地球惑星科学専攻)

多様な分析法を駆使して、分子地球化学を推進

[STXM] + [μ-XRF-XAFS-XRD]

STXMの実用化により、軽元素・主成分元素から重元素・微量元素 までシームレスに網羅した化学種分析が可能になった

複合的に利用した例は、案外少ない

2ビーム利用技術の開発と応用

STXM (Scanning Transmission X-ray Microscopy)

FZP**集光の10 nmオーダの軟X線を用いたイメージング・分光分析** - 元素&化学種(官能基)マッピング & ナノXAFS分析

- 主に透過配置(蛍光法・電子収量法も利用可能)
- (準)大気圧下(He置換雰囲気)で実験可能
- 広い応用範囲(多元素、大気圧下)、どの放射光施設にも1台有り

- Ptychography等への展開可 * 非常に幅広い分野への応用可、多くの潜在的ユーザー有

